Chemical and microbial diversity covary in fresh water to influence ecosystem functioning

Abstract

Invisible to the naked eye lies a tremendous diversity of organic molecules and organisms that make major contributions to important biogeochemical cycles. However, how the diversity and composition of these two communities are interlinked remains poorly characterized in fresh waters, despite the potential for chemical and microbial diversity to promote one another. Here we exploited gradients in chemodiversity within a common microbial pool to test how chemical and biological diversity covary and characterized the implications for ecosystem functioning. We found that both chemodiversity and genes associated with organic matter decomposition increased as more plant litterfall accumulated in experimental lake sediments, consistent with scenarios of future environmental change. Chemical and microbial diversity were also positively correlated, with dissolved organic matter having stronger effects on microbes …

Publication
Proceedings of the National Academy of Sciences
Erik Emilson
Erik Emilson
Research Scientist, Watershed Ecology Team Lead, Associate Editor CJFR

I am interested in how forests support freshwater ecosystem services. My research combines microbial and molecular approaches to undertand how forest productivity and disturbances affect ecosystem functions in headwater streams and lakes.