Tebufenozide has limited direct effects on simulated aquatic communities

Abstract

The use of insecticides to control undesirable pest species in forestry has undergone a shift from broad spectrum to narrow spectrum insecticides to reduce the risk of effects on non-target species. However, there is still risk of direct effects on non-target species as some insecticides function as hormone mimics, or through indirect pathways as the insecticide is broken down in the environment. Tebufenozide, an ecdysone hormone mimic, is the active ingredient in insecticides used in a variety of large scale pest control programs. An oft cited reason for the safety of Tebufenozide is that it is rapidly broken down in the environment by microbes. We investigated the potential non-target effects of two Tebufenozide formulations used in Canada, Mimic 240LV and Limit 240, on aquatic communities using an outdoor mesocosm experiment. We focus on direct effects on amphibian larvae (wood frog, Rana sylvaticus …

Publication
Ecotoxicology

abstract: “The use of insecticides to control undesirable pest species in forestry has undergone a shift from broad spectrum to narrow spectrum insecticides to reduce the risk of effects on non-target species. However, there is still risk of direct effects on non-target species as some insecticides function as hormone mimics, or through indirect pathways as the insecticide is broken down in the environment. Tebufenozide, an ecdysone hormone mimic, is the active ingredient in insecticides used in a variety of large scale pest control programs. An oft cited reason for the safety of Tebufenozide is that it is rapidly broken down in the environment by microbes. We investigated the potential non-target effects of two Tebufenozide formulations used in Canada, Mimic 240LV and Limit 240, on aquatic communities using an outdoor mesocosm experiment. We focus on direct effects on amphibian larvae (wood frog, Rana sylvaticus …” authors:


Emily Smenderovac
Emily Smenderovac
Watershed Ecologist

Trained in microbial ecology and bioinformatic analysis of community datasets.

Erik Emilson
Erik Emilson
Research Scientist, Watershed Ecology Team Lead, Associate Editor CJFR

I am interested in how forests support freshwater ecosystem services. My research combines microbial and molecular approaches to undertand how forest productivity and disturbances affect ecosystem functions in headwater streams and lakes.